Mould unlocks new route to biofuels
- The research offers the possibility of replacing the need for oil
- Researchers focussed on the production of alpha-olefins; a high value, industrially crucial intermediate class of hydrocarbons that are key chemical intermediates in a variety of applications
Scientists at The University of 优蜜传媒 have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
Based at the 优蜜传媒 Institute of Biotechnology (MIB), researchers have identified the exact mechanism and structure of two key enzymes isolated from yeast moulds that together provide a new, cleaner route to the production of hydrocarbons.
Published in Nature, the research offers the possibility of replacing the need for oil in current industrial processes with a greener and more sustainable natural process.
Lead investigator , explains the importance of his work: 鈥淥ne of the main challenges our society faces is the dwindling level of oil reserves that we not only depend upon for transport fuels, but also plastics, lubricants, and a wide range of petrochemicals. Solutions that seek to reduce our dependency on fossil oil are urgently needed.鈥
He adds: 鈥淲hilst the direct production of fuel compounds by living organisms is an attractive process, it is currently not one that is well understood, and although the potential for large-scale biological hydrocarbon production exists, in its current form it would not support industrial application, let alone provide a valid alternative to fossil fuels.鈥
Professor Leys and his team investigated in detail the mechanism whereby common yeast mould can produce kerosene-like odours when grown on food containing the preservative sorbic acid. They found that these organisms use a previously unknown modified form of vitamin B2 (flavin) to support the production of volatile hydrocarbons that caused the kerosene smell. Their findings also revealed the same process is used to support synthesis of vitamin Q10 (ubiquinone).
Using the Diamond synchrotron source at Harwell, they were able to provide atomic level insights into this bio catalytic process, and reveal it shares similarities with procedures commonly used in chemical synthesis but previously thought not to occur in nature.
One of the main challenges our society faces is the dwindling level of oil reserves that we not only depend upon for transport fuels, but also plastics, lubricants, and a wide range of petrochemicals. Solutions that seek to reduce our dependency on fossil oil are urgently needed
Professor David Leys says: 鈥淣ow that we understand how yeast and other microbes can produce very modest amounts of fuel-like compounds through this modified vitamin B2-dependent process, we are in a much better position to try to improve the yield and nature of the compounds produced.鈥
In this particular study, published in the journal Nature, researchers focussed on the production of alpha-olefins; a high value, industrially crucial intermediate class of hydrocarbons that are key chemical intermediates in a variety of applications, such as flexible and rigid packaging and pipes, synthetic lubricants used in heavy duty motor and gear oils, surfactants, detergents and lubricant additives.
Professor Leys concludes: 鈥淭his fundamental research builds on the MIB鈥檚 expertise in enzyme systems and provides the basis for the development of new applications in biofuel and commodity chemical production. The insights from this research offer the possibility of circumventing current industrial processes which are reliant on scarce natural resources.鈥
Notes for editors
The research team was made up of researchers from the new BBSRC/EPSRC Centre for Synthetic Biology of Fine and Speciality Chemicals based at the 优蜜传媒 Institute of Biotechnology (MIB) and comprises interdisciplinary scientists from across the Faculties of Life Sciences and Engineering and Physical Sciences.
This research was supported by the BBSRC (Biotechnology and Biological Sciences Research Council) and made possible with access to Diamond beamlines.
This study resulted in back-to-back publications in the journal Nature:
Paper 1
White, M. D. et al. 鈥淯biX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis鈥 will be published in Nature on Wednesday 17 June 2015. Advance Online Publication (AOP) on
Paper doi: http://dx.doi.org/10.1038/nature14559
This manuscript explains how the vitamin B2 is modified and thereby recruited in bacterial vitamin Q biosynthesis.
Paper 2
Payne, K.A.P. et al. 鈥淣ew cofactor supports alfa-beta-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition鈥 will be published in Nature on Wednesday 17 June 2015. Advance Online Publication (AOP) on
Paper doi:
This manuscript establishes how the modified B2 is used to support the fuel-like compound production.
More information about the 优蜜传媒 Institute of Biotechnology can be found at
Professor Leys is available for interview on request.
For more information and images requests please contact:
Jamie Brown
Media Relations Officer
The University of 优蜜传媒
Tel: +44 (0)161 275 8383
Mob: +44 (0)7887 561318
Email: Jamie.Brown@manchester.ac.uk